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ABSTRACT

This paper compares Wolfe's quadratic programming algorithm with
Cottle and Dantzig's principle pivot method. It is shown that Wolfe's

algorithm requires more operations.
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In this paper we will compare Wolfe's quadratic programming
algorithm with the principle pivot method proposed by Cottle and
Dantzig [3]. In the first section we describe the problem and define
some notation. In sections 2 and 3 the algorithms are briefly described
and examples worked out. Then in section 4 we discués the merits of
each algorithm.

No typographical distinction is made between vectors and scalars.
Matrices are designated by capital letters. The transpose of w is

written w'. All vectors are column vectors.

1. Problem Formulation The problem we wish to consider may be formulated

as follows. TFind x such that

£(x) = 2ig(c'x+ % x'Dx) 1.1)

where R = {xeE"; Ax 2 b, x > 0},

ceEn, beE"

A is a mxn matrix and D is a nxn matrix.
We can assume without loss of generality that D is a symmetric matrix.
If the region R is empty, then the problem (1.1) has no solution.
If R contains a single point, then the problem has a trivial, unique
solution. We will, therefore, assume that the interior of the region R
is non-empty.

Define the Lagrange function

L, % v = ol +%x'Dx = ¥k =~ bY = % (1.2)

Jn n
where yeE , veE .

Under the assumptions made on R we know that the Kuhn-Tucker [5] conditions



are necessary. That is, x exist only 1f there exist vectors y and v such

that x, y, v satisfy

\
c'+x'D-y'A-v'=0
Ax - b >0 }
(1-3)
y'(Ax - b) = 0, v'x = 0
x>0,y2>0, v>0. )

Solving these equations, eliminating v, rearranging and recalling that

D' = D ve have

\
c+Dx-A'y 20
b+Ax 20
} (1.4)
y'(-b + Ax) = 0, x'(c +Dx - A'y) =0
> 0 > 0.
x- ? y— J

We can express these conditions i{n a more compact vay. Put

* '[;] b [-tca] » N -[2 -3] : (1.5)

Then (1.4) is equivalent to what Cottle and Dantzig [3] call the Fundamental

Problem.

vegq+ Mz
w'z =90 } (1.6)
0

vw>0, 2

> >
- -

vhere M is a (ndm)x(n4m) matrix,

and w,q, 2z cEm.

We shall be concerned with two different algorithms which can be used to

solve the Kuhn-Tucker conditions as expressed in (1.6).



2. Wolfe's Algorithm The set of equations in (1.6) is linear except

for w'z = 0. Wolfe's algorithm is a modification of linear programming
algorithms to account for the equation w'z = 0.

Make b > 0 in (1.4) and subtract and add the slack and surplus
variables tj such that t > 0, teE". Let G be the mat-rix [i&ij-] of coef-

ficients of t. Now define the surplus vector s > 0, sr:En and rewrite

(1.4) as
c+Dx-A'y-s8=0 /
“b+Ax -Gt =0
r (2.1)
y'(-b + Ax) = 0, x'(c+Dx -A'y) =90
Xx,820 y,t2>20. J

Or equivalently,

[$1° B+ 4 SR ’
Zt'
} (2.2)
', y") [Zt] =0
[x, y, 8, t] 2 0. "J

Now using the definitions in (1.5) and putting w = [s, Gt] we have

q= M, -I)[z] =0 )
w
} (2.3)
w'z=0
w>0, z20 v

wvhich is of course (1.6) reformatted.

Now consider the problem



n 3
min I u
i 1
subject to
> (2.4)
(M’-I’ I)[z]-"q
w
u
w>0, z>0, u>0. J

If the solution to (2.4) has u = 0 and at the same time we have w'z = 0,
then we have solved (1.4) and hence (1.1) our original problem.

Wolfe's algorithm is to solve (2.4) using a linear programming
algorithm modified to ensure that w'z = 0 at all times. We can hold
w'z = 0 if at each iteration we ensure that if one of the vectors asso-
ciated with Wy OT 2z, is in the basis then the other is not.

The condition w'z = 0 guarantees that no more than (ntm) variables in
(2.3) need be non-zero. Hence, the solution to (2.3) is one of the basic
solutions to (2.4). In fact it can be shown that in spite of the require-
ment that w'z = 0, the linear programming algorithms still converge. (For
example, see Hadley [4] pages 214-221.)

Wolfe's algorithm requires that every iteration maintain w'z = 0,
hence we must start with a basic feasible solution for which this is ;rue.

Since q has (n+m) components, if we put

z =0
4 Ch c2>0 1w goeg X
8, = :

0 ctherwise,
E {-ci c<0 £m Yy ciuym
ug =

0 otherwise



and

Gto = -b.

Then [z°, w®, u®] is an initial basic feasible solution to (2.4) which
satisfies (2.3).

Convergence is guaranteed (assuming no degeneracy) if D is positive
definite. Hadley [4] describes a method due to Charnes [1] for solving
the semidefinite case. Instead of using D we use (D + €I) for € > 0 and
arbitrarily small. Then (D + €I) is positive definite and we have
convergence.

We will now consider two examples. The first is positive definite
and the second is positive semidefinite. However, both problems have unique
solutions.

The first problem we wish to consider is

min x2 + x2 - 8x1 - 10x2,

1 2
subject to

Xys Xy 2 0.

For this problem we have

-8 2 0
cn[_m],n- 0 2]2A= (3, -2,1b= (6.

And Wolfe's algorithm gives us (from 2.4)
min uy + u,

subject to

@0 3 =L g -q 0 z 8
0 2 2 0 <=1 0 0 1 w|=]|10
-3 «2 0 © 0 -1 0 0 u -6



with an initial basic feasible solution
[20’ w%, uv°] = [0, O, O, O, O, 6, 8, 10].

Tableaux I through IV are for the above problem. We see in tableaux
I and III that we cannot apply the normal simplex rules for exchanges of
basis vectors and Wolfe's modification comes into play. The optimal

solution to this problem is [z, w, u)=[4/13, 33/13, 32/13, 0, 0, 0, 0, O].

TABLEAU I: INITIAL TABLEAU

g | % %3 e by - g | Y2
2 0 3 -1 0 0 1 0 8 u
0 2 2 0 -1 0 0 1 10 u,
@ -2 0 0 0 -0 0 0 -6 vy

2 2 5 -1 -1 0 0 0 18

TABLEAU II
0 -4/3 @ =3 0 -2/3 1 0 4 u
0 2 2 0 -1 0 0 1 10 u,
1 33 0 0 0o 1/3 0 0 2 2,
0 2/3 5 -1 -1 -2/3 0 0 14

TABLEAU III
0 -4/9 1 -1/3 0o -2/9 1/3 0 4/3 2y
0 0 2/3 -1 4/9 -2/3 1 22/3 u,
1 2/3 0 0 0 1/3 0. 0 2 2,
0 26/9 0 2/3 -1 4/9 -5/3 0 22/3



TABLEAU IV
0 0 1 -3/13 -2/13 =-2/23 3/13 2713 32/13 Z4
0 ‘1 0 33 -9726 .2J13 <3/13 9/26 33/13 z,
1 0 o0 -2/13 <343 33 2/13 -3/13 &/13 2,

0 0 0 0 0 0 -1 -1 0
Our second example is

2
min 2x2 - 2x1 - 3x2
subject to
x1+4x2;4
X +x, 22

For this problem we have

c= [-z], D=[0 o] : A-[-l -4] ;b =[-4]
-3 04 -1 -1 -2J-
Clearly, D is semidefinite. Our initial basic feasible solution is
[z°, w°, v°] = [0, 0, 0, O, O, O, 4, 2, 2, 3]. And the optimal solution is

(£, @, 4] = [7/&, 1/4, 0, 2, O, O, 5/4, 0, O, 0).

This problem takes five iterations (Tableaux V thru X). Note that
in Tableau VI we cannot enter z4 OT 2, into the basis so that zq must

enter the basis even though the last row is 0.



-1

o o = O o

o O = o

o © O © = ©

o

o © ©

=) O S e w o ©o & M

= o

o

1/4

1/4

3/4

v, Wi v,
0 0 0
-1 0 0
0 o 0
0 0 e §
-1 0 0
TABLEAU VI

TABLEAU VII
0 0 0

-1/4 0 0

0 0 0
TABLEAU VIII
s 13 ~1i/3

0 1/3 -1/3

0 -1/3 4/3
-1/4 -1/3 1/3
1/4 1/3 -1/3

o O O O =

2
0 2 Uy
1 3 u,
0 -4 wq
0 -2 Y,
0 5
0 2 uy
1/4 3/4 z,
1 =1 Wq
1/4 -5/4 v,
-1 2
0 2 uy
1/4 3/4 z,
-1 1 zy
-3/4 -1/4 v,
-1 2
-1/4 23/12 u;
0 8/12 z,
0 4/3 zy
1/4 1/12 24
-1/4 23/12



TABLEAU IX

23 0% Y1 Y2 Y3 Y4 Y1 Y2

-3 0 -1 1 @ -4/3 1 -1 5/3 uy
0 0 0 0 Y3 -1/3 0 0 81232,
0 0 0 0 -1/3  4/3 0 0 4/3 2z
& 1 0 -1 -4/3  4/3 0 1 1/3 2,

-3 0 -1 1 4/3 -4/3 0o -1 5/3

TABLEAU X

-9/4 0 -3/4 34 1 -1 3/4 -3/4 5/4 v,

34 0 1/4-1/4 0 0 -1/4 1/4 1/4 2,

-3/4 0 -1/4 1/4 0 1 14 -1/4 14 2,
1 1 -1 o o0 0 1 o 22,
0o 0 0 o0 0 0 -1 -1 0
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3. The Principle Pivot Method For convenience we repeat the Fundamental

Problem. Find vectors w, z, such that

w=q + Mz,
w'z = 0, (3.1)

z20, w20

where M is a (n + m) square matrix and w, q, z ¢ Enhm. We have seen
that this system (3.1) is equivalent to the Kuhn-Tucker conditions (1.4)

and has a unique solution if D is positive definite.
zn+m w.Z
i=1 i1

negative pair (wi, zi) has at least one zero component. We call (wi, zi)

From (3.1) we have w'z = = 0 which implies that each non-

the complementary pair.

A pivot is an operation on the equation w = q + Mz which exchanges
the roles of wj and Zp for some j and k. We call (wj, zk) the pivotal pair.
The pivot is accomplished by solving one of the (ntm) equations for ) in

terms of z i#k and w We then eliminate the variable 2y from the

1? h

other (ntm) - 1 equations. The result is a new system
w o= qv + Mz (3.2)

in which the roles of the pivotal pair are interchanged, i.e., vy

appears on the right and z, appears on the left in (3.2). The operation

is not defined if mjk = 0. If in the pivotal pair, j = k, then it is

called a complementary pivot. A sequence of complementary pivots is a

principle pivot. The reader will recognize the pivot operation as an

iteration of the classic Gauss-Jordan reduction technique for solving
linear equations.
A basic solution to (3.2) is a solution with no more than (n+m) non-

zero variables. A basic solution to (3.2) which also satisfies (3.1) is
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a complementary basic solution.
Cottle and Dantzig [3] show that, under certain assumptions on
the matrix M, a sequence of principle pivots on (3.2) starting from a
basic solution to (3.2) will converge to a complementary basic solution
to (3.1) in a finite number of iterations (assuming ho degenéracy). This
is the Principle Pivot Method. Convergence of this algorithm is proved
in the case where M has positive principle minors [3]., If M is positive
definite, then it has positive principle minors. In the case where M
is positive semidefinite, some of the principle minors are zero. Cottle
[2] has provided a modification of the principle pivot algorithm which
converges if M is positive semidefinite to a solution or an indication
oé an unbounded solution. The proofs for convergence depend on the ob-
servations that the properties of "positive principle minors" and
."positive (semi)definite" remain invariant under the operation of principle
pivot. .
To translate the requirements on M to equivalent requirements on D
we observe that if D is positive definite or positive semidefinite, then

M is positive semidefinite since

z'Mz = (x', y')[D -A"][x
¢ ol

= x"Dx + (y'Ax - x'A'y)

= x"Dx .

Hence, if D is positive (semi)definite we know that the algorithm will
converge or give an indication of an unbounded solutiom.

We now consider the examples solved by Wolfe's method in section 2.
We will use the tableau suggested by Cottle [2]. The first problem is
in tableaux XI through XIV and the second problem in.tableaux XV through

XVIII.



TABLEAU XI TABLEAU XII

TABLEAU XIII TABLEAU XIV
Vs z, Wy v, W, W
4/3 0 4/9 -1 %, 32/13 0 0 -1

-22/3 © 0 z, 33/13. © -1 0

2 -1 -2/3 0 z; 4/13 -1 0 O
TABLEAU XV TABLEAU XVI
zl 22 23 24 w4 22 23 24
=2 0 -3 w =20 0 1 @
<50 & & 3% w, =30 4 4 1
4 -1 -4 0 O wy 20 -3 0 0

N
|
=
1
=
o
o
N
=
N
1
=
1
()
o
o

TABLEAU XVII TABLEAU XVIII

wl’ 22 23 wl Wl' W2 23 w
2 0O 0 -1 -1 24 2 0 0 -1 -1
10 @ 3 0 2, Uk 0 -1 -3/4 0
2 0 -3 0 0 w3 5/4 0 0 4/4 0
2 -1 -1 0 0 z 774 -1 0 3/4 0
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4. Comparison Both of the algorithms described in sections 2‘and 3 are
adjacent extreme point methods. That is, each algorithm starts at an ex-
treme point of a closed convex set and proceeds systematically by an
exchange of basis vectors to examine an adjacent extreme point.

If we use the simrlex algorithm in Wolfe's techﬁique thén we see
that each iteration involves a pivot operation. However, the matrix on
. which this operation is performed is at least (n+m)x2(n+m)1 in the case
of Wolfe's algorithm and (mim)x(n+m) in the principle pivot algorithm.
This means four times, or more, as many operations for Wolfe's method
per iteraticn and at least twice the storage requirement. The revised
simplex method offers some improvement in Wolfe's algorithm but it is not
significant enough to balance the scales in the direction of Wolfe's
method.

We have already observed that both algorithms converge under the
same circumstances. This is due primarily to the use of the Kuhn-Tucke¥
conditions in establishing the problem. However, the semidefinite case
may have an unbounded solution. The principle pivot method with Cottle's
modificaticn detects this situation. Wolfe's algorithm with Charnes'
modificatioin, however changes the problem itself. It will converge even

though the: solution is unbounded. As an example, consider

rdin xi - 2x; - 3xp,
subject to

x > 0.
This problem has an unbounded solution at (1, xz). However, by adding c2>0

we have

e This number is increased by n using the method described in this paper

for choosing an initial basic feasible solution. Hadley [4] describes
an alternative method which requires only 2(n+m) columns. However, it
involves finding the inverse of the basis matrix.
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1 2 1 2
min (1 +-§ €) x) +-§-ex2 - 2x1 - 3x2,

subject to x > 0.

Which has a solution at (1/(1 +-% £), 3/e).

Clearly, as ¢ + 0 we see that the solution is unbounded. The problem
-0of course is that we may not recognize it as unbounded in practice if e is
too large. (Because of the capacity of a computer for example.) With care
this disadvantage can be overlooked.

One interesting difference between the two methods is that in Wolfe's
method the solution at each iteration is feasible. However, in the principle
pivst method the solution is not feasible until convergence. This is not
very important since it would be useful only if one stopped the iterations
before optimality was reached. Because of the relative speeds, this is more
likely to happen with Wolfe's algorithm anyway.

We have seen that Wolfe's method requires at least four times as many
operations per iteration as the principle pivot method. The principle pivot

method should require no more than (ntm) iterations while Wolfe's will
| generally require from (n+m) to 2(n+m) iterations. From this observation,
one easily concludes that the principle pivot method is faster than Wolfe's

and hence superior since it solves the same class of problems as Wolfe's.
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